Quantum Computing and Quantum Machine Learning - Part 3

Category: Tutorial


Posted on 2021-01-30, by 0nelovee.

Description

7xjPvxeNyYq8QP6nm9Gz6bVag9CuYqo0.jpg
Quantum Computing and Quantum Machine Learning - Part 3
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English + .srt | Duration: 24 lectures (1h 52m) | Size: 394.2 MB


Learn great concepts like Quantum Teleportation, Super Dense Coding and IBM's qiskit toolkit What you'll learn:
Quantum Physics
Quantum Computing
Quantum Machine Learning
Algebra
Calculus
Programming
Python
Quantum Gates
Electronics
Machine Learning
Data Science
Artificial Intelligence
Physics
Mathematics

Requirements
Basic Python
Quantum Computing and Quantum Machine Learning - Part 1
Quantum Computing and Quantum Machine Learning - Part 2

Description
Quantum Computing and Quantum Machine Learning - Part 3 , is the continuation from what was taught in Part 1 and Part 2. This is going to be the new era of computation/ physics. Enroll for an enriching career in Quantum Research and learn Pythonic Libraries like Qiskit to operate with Quantum Gates and Quantum Circuits in depth. A fantastic computing era to join. In this course will see how to generate quantum circuits using quantum gates like CNOT, Hadamard, SWAP etc. This course sets the correct path in order to study Quantum Cryptography in depth and in the later series will move towards Quantum Machine Learning and libraries of Google like CIRQ.

Will see how to handle quantum circuits using quantum as well as classical channel. Applications of Quantum Teleportation and Super Dense Coding and a very important theorem called as No Cloning Theorem. Quantum computing is the use of quantum phenomena such as superposition and entanglement to perform computation. Computers that perform quantum computations are known as quantum computers.

In the classical view, one entry would have a value of 1 (i.e. a 100% probability of being in this state) and all other entries would be zero. In quantum mechanics, probability vectors are generalized to density operators. This is the technically rigorous mathematical foundation for quantum logic gates, but the intermediate quantum state vector formalism is usually introduced first because it is conceptually simpler.

Who this course is for
Developers
Data Scientists
Machine Learning Engineer
Artificial Intelligence Researchers
Data Engineer
Researchers
Scientists
Physicists
Mathematicians
Deep Learning
Deep Learning Engineers
Reinforcement Learning
Programmers
Python Developers

Download
http://nitroflare.com/view/B308E4921F1D8BE/Quantum_Computing_and_Quantum_Machine_Learning_-_Part_3.rar

or
http://rapidgator.net/file/e95400a083e4dbcb60cfe29074ab2533/Quantum_Computing_and_Quantum_Machine_Learning_-_Part_3.rar.html


Sponsored High Speed Downloads
7161 dl's @ 3139 KB/s
Download Now [Full Version]
7864 dl's @ 2665 KB/s
Download Link 1 - Fast Download
5380 dl's @ 2901 KB/s
Download Mirror - Direct Download



Search More...
Quantum Computing and Quantum Machine Learning - Part 3

Search free ebooks in ebookee.com!


Links
Download this book

No active download links here?
Please check the description for download links if any or do a search to find alternative books.


Related Books


Comments

No comments for "Quantum Computing and Quantum Machine Learning - Part 3".


    Add Your Comments
    1. Download links and password may be in the description section, read description carefully!
    2. Do a search to find mirrors if no download links or dead links.
    Back to Top